首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   21篇
  2022年   2篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   5篇
  2016年   7篇
  2015年   4篇
  2014年   16篇
  2013年   26篇
  2012年   12篇
  2011年   29篇
  2010年   20篇
  2009年   12篇
  2008年   21篇
  2007年   17篇
  2006年   16篇
  2005年   26篇
  2004年   11篇
  2003年   16篇
  2002年   13篇
  2001年   13篇
  2000年   17篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   9篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
  1915年   1篇
排序方式: 共有382条查询结果,搜索用时 15 毫秒
31.
Galleria mellonella larvae cultured axenically were treated with axenic dauer juveniles of Heterorhabditis bacteriophora and Steinernema carpocapsae. After 3 days S. carpocapsae had killed all insects, with 9.4 +/- 4.3 nematodes per larva. H. bacteriophora were unable to kill G. mellonella, although 13.3 +/- 6.4 nematodes per Galleria were found in the hemocoel. Invading nematodes of both strains recovered from the dauer stage. H. bacteriophora developed into hermaphrodites with eggs and J1 in the uterus and in the hemolymph of the living insects. Development beyond the J1 stage was not recorded. An injection of supernatants from different Photorhabdus luminescens cultures killed the insects but could not provide nutrients to support a further development. Only the injection of bacterial cells supported production of dauers in the axenic insects. Axenic S. carpocapsae developed to adults and produced offspring. After 3 weeks an average of 5275 nematodes per larva were counted, of which 6.7% were dauer juveniles, 39.2% other juvenile stages, 11.9% males, and 42.2% females. Compared to in vivo reproduction in the presence of the symbiotic bacterium Xenorhabdus nematophilus the dauer juvenile yields were low. Even after 5 weeks the percentage of dauer juveniles did not surpass 10%.  相似文献   
32.

Background and Aims

Alterations of plasmodesma (PD) connectivity are likely to be very important for plant development. Here, the repetitive division pattern of cambial initials in Populus nigra ‘italica’ was studied to follow the development of the PD network during maturation. Furthermore, seasonal changes were investigated in order to trace indications for developmental and functional adaptations.

Methods

Cambium samples of P. nigra twigs, collected in summer, autumn and spring, were chemically fixed for transmission electron microscopy. The parameters, PD density (number of PDs per square micrometre cell-wall area) and PD frequency (total number of PDs per average cell-wall area), were determined for radial and tangential cell interfaces deposited in chronological order.

Key Results

Data sets, presented in plasmodesmograms, show a strong variability in the PD network throughout the year. In summer, high PD numbers occur at the division wall which, after PD doubling by longitudinal fission, decline with further development both at the xylem and the phloem side. In autumn, the number of PDs at the division wall is low as they are in subsequent tangential interfaces. In spring, the first cell division coincides with a massive increase in PD numbers, in particular at the division wall. Only the radial walls between initials maintain their PD equipment throughout the year. This feature can be exploited for identification of the initial layer.

Conclusions

PD networks in the cambium go through a strict developmental programme depending on the season, which is associated with changing functional requirements. For instance, PD numbers correlate with proliferative activity and potential pathways for intercellular signalling. Increases in PD numbers are ascribed to longitudinal fission as a major mechanism, whereas the decline in older derivatives is ascribed to PD degradation.  相似文献   
33.
Frequency, density and branching of plasmodesmata were counted in successive tangential and transverse walls in the cambial zone of tomato stems in order to examine development of the plasmodesmal network in a chronological order. Coincident with progress of cell development, plasmodesmal connectivity increased, both at the xylem- and phloem-side. In transverse walls, the number of secondary plasmodesmata enhanced considerably. The same held for tangential walls, with a superimposed plasmodesmal doubling during the first phase of phloem development. This plasmodesmal doubling was interpreted to result from the deposition of wall material between branched plasmodesmal strands. Structural plasmodesmal development was correlated with production of hydroxyl radicals which control local cell wall alterations. Successive phases of plasmodesmal deployment and modification were distinguished which may coincide with differential functional capacities as documented by intracellular injection of fluorochromes. Diffusion-driven symplasmic transport appeared to be transiently interrupted during cell maturation.  相似文献   
34.
35.
Ehlers MD 《Neuron》2007,55(5):686-689
Dendrites and axons exhibit different morphologies and patterns of growth. This difference in neuronal structure is controlled by evolutionarily conserved directed trafficking through the secretory pathway.  相似文献   
36.
The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits.  相似文献   
37.
38.
AIMS: The role of swimming pool water as a source of human adenovirus (HAd) infection has previously been demonstrated. In this study, the risk of infection of HAds detected in a survey of swimming pool water from two indoor and one outdoor swimming pools over a period of 1 year was assessed. METHODS AND RESULTS: The HAds were concentrated from 1 l grab samples of swimming pool water using a silicon dioxide-based method. The extracted HAd DNA was amplified by means of a nested PCR method. Adenoviruses were detected in four of 26 samples (15.4%) from the indoor swimming pool A, eight of 38 samples (21.1%) from the indoor swimming pool B and three of 28 samples (10.7%) from the outdoor swimming pool C. Application of these results in an exponential risk assessment model indicated a daily risk of infection of 2.61 x 10(-3) for swimming pool A, 3.69 x 10(-3) for swimming pool B and 1.92 x 10(-3) for swimming pool C assuming a daily consumption of 30 ml of swimming pool water. CONCLUSIONS: No acceptable (tolerable) risk of infection has yet been recommended for swimming pool water. However, the quality of swimming pool water is generally expected to be similar to that of drinking water. One infection per 10 000 consumers per year has been recommended for drinking water. The risk of HAd infections calculated for the swimming pool water under investigation exceeded this acceptable risk. SIGNIFICANCE AND IMPACT OF THE STUDY: The finding that swimming pool water which conforms to generally accepted specifications for treatment, disinfection and indicator organisms constituted a risk of HAd infection, has implications for the swimming pool industry. The formulation of acceptable (tolerable) risks of infection for swimming pool water may be essential. Specifications will, therefore, have to be formulated to ensure that swimming pool water conforms to the acceptable risk of infection.  相似文献   
39.
Proper growth of dendrites is critical to the formation of neuronal circuits, but the cellular machinery that directs the addition of membrane components to generate dendritic architecture remains obscure. Here, we demonstrate that post-Golgi membrane trafficking is polarized toward longer dendrites of hippocampal pyramidal neurons in vitro and toward apical dendrites in vivo. Small Golgi outposts partition selectively into longer dendrites and are excluded from axons. In dendrites, Golgi outposts concentrate at branchpoints where they engage in post-Golgi trafficking. Within the cell body, the Golgi apparatus orients toward the longest dendrite, and this Golgi polarity precedes asymmetric dendrite growth. Manipulations that selectively block post-Golgi trafficking halt dendrite growth in developing neurons and cause a shrinkage of dendrites in mature pyramidal neurons. Further, disruption of Golgi polarity produces neurons with symmetric dendritic arbors lacking a single longest principal dendrite. These results define a novel polarized organization of neuronal secretory trafficking and demonstrate a mechanistic link between directed membrane trafficking and asymmetric dendrite growth.  相似文献   
40.
Human transformations of the Wadden Sea ecosystem through time: a synthesis   总被引:3,自引:3,他引:0  
Todays Wadden Sea is a heavily human-altered ecosystem. Shaped by natural forces since its origin 7,500 years ago, humans gradually gained dominance in influencing ecosystem structure and functioning. Here, we reconstruct the timeline of human impacts and the history of ecological changes in the Wadden Sea. We then discuss the ecosystem and societal consequences of observed changes, and conclude with management implications. Human influences have intensified and multiplied over time. Large-scale habitat transformation over the last 1,000 years has eliminated diverse terrestrial, freshwater, brackish and marine habitats. Intensive exploitation of everything from oysters to whales has depleted most large predators and habitat-building species since medieval times. In the twentieth century, pollution, eutrophication, species invasions and, presumably, climate change have had marked impacts on the Wadden Sea flora and fauna. Yet habitat loss and overexploitation were the two main causes for the extinction or severe depletion of 144 species (~20% of total macrobiota). The loss of biodiversity, large predators, special habitats, filter and storage capacity, and degradation in water quality have led to a simplification and homogenisation of the food web structure and ecosystem functioning that has affected the Wadden Sea ecosystem and coastal societies alike. Recent conservation efforts have reversed some negative trends by enabling some birds and mammals to recover and by creating new economic options for society. The Wadden Sea history provides a unique long-term perspective on ecological change, new objectives for conservation, restoration and management, and an ecological baseline that allows us to envision a rich, productive and diverse Wadden Sea ecosystem and coastal society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号